

2025

PRODUCT DATA SHEET

COMPANY PROFILE

Based in Melbourne, Australia, Petronich Pipe Solutions is the exclusive distributor of Shandong Ocean Pipe Technology's advanced composite piping systems across Australia and the Middle East & North Africa (MENA regions). We specialise in GRE (Glass-fibre Reinforced Epoxy) and GRP (Glass-fibre Reinforced Plastic) pipes and fittings, engineered for demanding applications - from high-pressure process lines and fire-water mains to marine, LNG and chemical services. Our services also extend to the supply of other piping systems including HDPE and Carbon Steel pipes and fittings - available upon request. A dedicated technical supervisor is also available on request to join you on site for installation, support and training.

With decades of logistics experience, our expertise spans the complete supply chain - from specification and sourcing to support and service - ensuring tailored, reliable solutions that meet the highest standards.

Product Assurance - GRE/GRP pipe systems main materials include high strength fibre-glass rovings from PPG company, speciality fibre reinforcements from Owens Corning & premium epoxy resins from American DOW company.

Process Control - Pipes and fittings are manufactured using computer-controlled equipment - certified with ISO 9001.

Acceptance Control - Each pipe undergoes pressure testing using automatic press machinery to ensure all pipes and fittings are qualified.

OUR VALUES

QUALITY

We prioritise excellence in every pipe we supply, ensuring long-term reliability & performance.

INNOVATION

We embrace cutting-edge technology to deliver the best products to our clients.

SUSTAINABILITY

We are committed to eco-friendly practices in manufacturing and product design.

INTEGRITY

We uphold honesty & transparency in all our business dealings.

CUSTOMER FOCUS

We aim to exceed customer expectations through tailored solutions & exceptional service.

Table of Contents

Certifications	.01
General Introduction of GRE Pipe Systems	.02
High-Pressure Pipe/Fittings Parametres	.05
Speciality LNG/Chemical/ Marine GRE Pipe Parametres	
Partnerships	23
Case Studies	29

Certifications

Manufacturing Assessment

This is unority that but Undersigned revoluted for moniforming easily procedures of SHANDOM COCEAN PIPE TECHNOLOGY CO., LTD. Result at Washing Economic Development Zono, Devhou City, Shandong, China The quality monthering visions during application were resided to what the quotile curryer, required by the Aris Back, Galactic and escalated professions and standards for the mandesian of the formattenian of the contradiction of

Glassfiber Reinforced **Epoxy**

GRE pipes are high-performance composite pipes manufactured using epoxy resin reinforced with continuous glassfibers. This combination provides exceptional strength, durability, and resistance to harsh environmental conditions.

Diameter Range	Pressure Tolerance	Temperature Range
25 mm – 1000 mm	Up to 25 MPa	Up to 93 °C (200 °F)

Key Features

High Strengthto-Weight Ratio

Low Maintenance

Thermal Stability

Corrosion Resistance

LIMITATIONS

Pressure ≤ spec Temperature ≤ limiit **Proper installation** required

Main Connections

Socket **Adhesive Bonded**

Lamination **Joint**

Flange Connection

Rubber Seal Ball and Spigot

Locked Joint

Threaded Connection **API SPEC 5B**

Applications

Oil & Gas

Onshore/ offshore facilities, flowlines, injection systems

Petrochemical **Plants**

Transport of corrosive chemicals and fluids

Civil Infrastructure

Water distribution, sewage, firewater pipelines

Marine

Desalination ballast water, seawater handling

Available GRE Pipe Sizes & Pressure Ratings

																		IN/		1 1	1 1 1	l
Diameter Inch/mm	1 "	2"	3"	4"	5 "	6 "	8"	10"	12"	14"	16"	18"	20"	22"	24"	26"	28"	30"	32"	36"	40"	
	25	50	80	100	125	150	200	250	300	350	400	450	500	550	600	650	700	750	800	900	1000	
Pressure MPa																						١
1	1	$\sqrt{}$	1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	1	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	1	$\sqrt{}$		$\sqrt{}$	1		l '
1.6	$\sqrt{}$					$\sqrt{}$				$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$			$\sqrt{}$				
2	1		1	$\sqrt{}$	1	1	V	1	1	V		V	1		V	1		V	1	1		
2.5	1		1	1	1	V	7	1	1		1	7	1		$\sqrt{}$	7						
2.5	$\sqrt{}$	\checkmark				7	7	7	7	$\sqrt{}$	7	7	7									
4	$\sqrt{}$					$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$										
5	1	$\sqrt{}$				$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$										
5.5	\checkmark	\checkmark				\checkmark	$\sqrt{}$			\checkmark	\checkmark	$\sqrt{}$										
7	1	$\sqrt{}$				$\sqrt{}$	$\sqrt{}$		$\sqrt{}$													
8.5	$\sqrt{}$	$\sqrt{}$				\checkmark	√		\checkmark													
10	$\sqrt{}$	$\sqrt{}$				√	7															
12	\checkmark	\checkmark				\checkmark	√															
14	\checkmark	\checkmark				\checkmark	$\sqrt{}$															
16	1					$\sqrt{}$																
17	1	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$																	
18	1	$\sqrt{}$																				
20	$\sqrt{}$	$\sqrt{}$																				
22	$\sqrt{}$																					
25	$\sqrt{}$	$\sqrt{}$																				١,

For additional pressure & diametre options, please consult our sales team.

GRE Pipe Physical & Chemical Characteristics

	character	(psi) istic value		(Mpa) characteristic value		
	75 F	200 °F	24 ℃	93℃		
ASTM D2105 Axial tensile-ASTMD2105 limit stress design stress Gave quantity elasticity	10,300 2,575 1.61×10°	7,680 1,920 1,16×10°	71 17.8 12411	52.9 13.2 7997		
Poisson's ratio	0.	38	0.3	38		
ASTM D695 Axial compression-ASTMD695 limit stress design stress Gave quantity elasticity	33,300 8,300 1.26×10 ⁶	20,383 5,090 0.66×10 ⁶	230.0 57.4 8687	140.5 35.1 4550		
ASTM D2925 Bending beam-ASTMD2925 limit stress limit stress design stress Elastic modulus (long-term)	23,000 2,900 2.18×10 ⁶	17,166 2,145 1.29×10°	159 20.0 15031	118.3 14.8 8894		
ASTM D1599 Static pressure blasting test-ASTMD1599	46,300	47,990	319	330		
ASTM D2992 Method A hoop tensile stress 150 x10 ⁶ Cycles LTHS Method B hoop tensile stress LTHS 200 ° F, the static pressure 20 years LCL	8,850	6,090 16,945 14,654	61.0	41.9 116.8 101.0		
ASTM D696 coefficient of linear expansion -ASTM D696	1.26×10-	5in/in/ 『F	2.27×10-5m	nm/mm/ ℃		
ASTM D177 Wire coefficient -ASTM D177	0.23BTU/(ft)(hr)(F)	0.14W/(m)(℃)		
ASTM D792	1	.8	1.8	8		
SF Flow coefficient -SF Hacen williams coefficient	15	50	15	0		

HIGH PRESSURE PIPE/ FITTING SYSTEMS

GRE

High-pressure (HP) GRE pipes and fittings are designed and developed with the application of oilfields in mind. These HP pipe systems are made of high-strength fibreglass and epoxy resin using innovative winding technology.

Diameter Range	Pressure Tolerance	Temperature Range			
38 mm – 200 mm (1.5" - 8")	Up to 25 MPa	Up to 93 °C (200 °F)			

Key Features

High Pressure Resistance

Lightweight & Easy Transport

Thread Joint Sealing

Corrosion Resistance

Long Service Life

Low Friction & No Fouling

Standards

API 15LR

American Petroleum Institute 15LR Standards

SY/T6266-2004

Petroleum and Natural Gas Industry Standards

IMO A.753

International Maritime Organization A.753 Standards

ANSI B16.5

American Society of Mechanical Engineers B16.5 Standards

ASTM F1173

IMO LEVEL 3

FIRE ENDURANCE

Reinforced Fire Jacket

American Society for Testing and Materials F1173 Standards

(A)

Excellent Hydraulic Characteristic

Fittings

Threaded fittings matched by size and pressure, manufactured by winding process.

Pipe-Connecting Series

Bell & Spigot Joint Double "O"-Ring Joint Flange Joint

Conductive Pipe

Supplied with conductive carbon fibers and carbon powder to meet high anti-static requirements

HP GRE PIPES & FITTINGS

Applications

Crude oil & natural gas lines

Oil gathering line

Petroleum chemical and gas lines

Process lines

Waste lines

Pipeline connected to a tank or other systems

Mixed water line

Ballast piping

Salt water supply lines

Cooling water

Potable water

Fresh water lines

Firewater systems

Desalted water equipment

Sounding tubes

Vent lines

Sanitary liners

Scuppers

Conduit

__ Drains

HP GRE PIPE/FITTING PERFORMANCE

Epoxy resin pipe system	Blue pipe	Red pipe				
ASTM D2310 RTRP (Reinforced thermosetting resin pipe),classified according to ASTM D2310	RTRP-11AX	RTRP-11AF				
Diameter range	38-200mm	38-200mm				
Circulating pressure Mpa	5.5-27.6	5.5-24.2				
Curing system	Acid anhydride cured epoxy pipe	Amine cured epoxy pipe				
The highest working temperature ${}^{\circ}\!$	80℃	100℃				
Thickness of inner liner	No inner liner	No inner liner				
Joint method	API 8 API 8 RND thread	API 8 API 8 RND thread				
Application	Transporting crude oil, natural gas, injecting water or gathering oil; salt water fresh water, CO2					

HP GRE PIPE DIAMETRE & PRESSURE

Diameter	Pressure
1.5" (40mm)	
2" (50mm)	
2.5" (65mm)	
3" (80mm)	3.5MPa
4" (100mm)	
6" (150mm)	
8" (200mm)	
1.5" (40mm)	
2" (50mm)	
2.5" (65mm)	
3" (80mm)	5.5MPa
4" (100mm)	
6" (150mm)	
8" (200mm)	
1.5" (40mm)	
2" (50mm)	
2.5" (65mm)	
3″ (80mm)	7MPa
4" (100mm)	
6" (150mm)	
8" (200mm)	

Diameter	Pressure
1.5" (40mm)	
2" (50mm)	
2.5" (65mm)	
3" (80mm)	8.5MPa
4″ (100mm)	
6″ (150mm)	
8″ (200mm)	
1.5" (40mm)	
2" (50mm)	
2.5" (65mm)	
3″ (80mm)	10MPa
4" (100mm)	
6″ (150mm)	
8″ (200mm)	
1.5" (40mm)	
2" (50mm)	
2.5" (65mm)	
3" (80mm)	14MPa
4" (100mm)	
6″ (150mm)	
8" (200mm)	

Diameter	Pressure
1.5″ (40mm)	
2″ (50mm)	
2.5" (65mm)	17MPa
3" (80mm)	17 WPa
4″ (100mm)	
6″ (150mm)	
1.5" (40mm)	
2" (50mm)	
2.5" (65mm)	21MPa
3″ (80mm)	
4″ (100mm)	
1.5" (40mm)	
2″ (50mm)	
2.5" (65mm)	25MPa
3″ (80mm)	
4″ (100mm)	

HP GRE FITTINGS - 90 DEGREE ELBOWS

90 90 Deg Elbow

API SPEC 5B Inside thread standard: API SPEC 5B

(in) (mm) (I 1 ¹ / ₂ 1 ¹ / ₂ 8. 1 ¹ / ₂ 40 1 ¹ / ₂ 1	essure MPa) 7 5~14 17 8~20 2~25 7 8.5 0~14	(in) 4.50 4.50 4.50 4.50 4.50 5.00	(mm) 114.3 114.3 114.3 114.3 114.3 127.0	(in) 2.25 2.25 2.25 2.25 2.25 2.25	(mm) 57.2 57.2 57.2 57.2
(in) (mm) (I 1 ¹ / ₂ 1 ¹ / ₂ 8. 1 ¹ / ₂ 40 1 ¹ / ₂ 1 1 ¹ / ₂ 2	MPa) 7 .5~14 17 8~20 2~25 7 8.5	4.50 4.50 4.50 4.50 4.50 5.00	114.3 114.3 114.3 114.3 114.3	2.25 2.25 2.25 2.25 2.25	57.2 57.2 57.2
1 ¹ / ₂ 1 ¹ / ₂ 8. 1 ¹ / ₂ 1 ¹ / ₂ 1 ¹ / ₂ 2	.5~14 17 8~20 2~25 7 8.5	4.50 4.50 4.50 4.50 5.00	114.3 114.3 114.3 114.3	2.25 2.25 2.25	57.2 57.2
1 ¹ / ₂ 40 8. 1 ¹ / ₂ 1 1 2 2	17 8~20 2~25 7 8.5	4.50 4.50 4.50 5.00	114.3 114.3 114.3	2.25 2.25	57.2
1 ¹ / ₂ 40 1 1 1 2 2 2	8~20 2~25 7 8.5	4.50 4.50 5.00	114.3 114.3	2.25	
1 ¹ / ₂ 2	2~25 7 8.5	4.50 5.00	114.3		57.2
2	7 8.5	5.00		2.25	
—	8.5		127.0		57.2
		5.00		2.69	68.3
4	0~14		127.0	2.69	68.3
2 1		5.00	127.0	2.69	68.3
2 50	17	5.00	127.0	2.69	68.3
2 1	8~20	5.00	127.0	2.69	68.3
2 2	2~25	5.00	127.0	2.69	68.3
21/2	7	5.75	146.1	3.00	76.2
21/2	8.5	5.75	146.1	3.00	76.2
2 ¹ / ₂ 65	0~14	5.75	146.1	3.00	76.2
21/2	17	5.75	146.1	3.00	76.2
21/2	8~20	5.75	146.1	3.00	76.2
2 ¹ / ₂ 2	2~25	5.75	146.1	3.00	76.2
3	7	6.50	165.1	3.25	82.6
3	8.5	6.50	165.1	3.25	82.6
3 80 1	0~14	6.50	165.1	3.25	82.6
3	17	6.50	165.1	3.25	82.6
3 1	8~20	6.50	165.1	3.25	82.6
3 2	2~25	6.50	165.1	3.25	82.6
4	7	8.00	203.2	4.13	104.9
4	8.5	8.00	203.2	4.13	104.9
4 100 1	0~14	8.00	203.2	4.13	104.9
4	17	8.00	203.2	4.13	104.9
4 1	8~20	8.00	203.2	4.13	104.9
4 2	2~25	8.00	203.2	4.13	104.9
6	5.5	9.75	247.7	4.00	101.6
6	8.5	9.75	247.7	4.00	101.6
6 150	10	9.75	247.7	4.00	101.6
6 1	2~14	9.75	247.7	4.63	117.6
6	17	9.75	247.7	4.63	117.6
8(8 ⁵ / ₈)	5.5	9.00	228.6	4.50	114.3
8(8 ⁵ / ₈)	8.5	9.00	228.6	4.50	114.3
8(8 ⁵ / ₈) 200	10	9.00	228.6	4.50	114.3
8(9 ⁵ / ₈)	10	11.00	279.4	4.88	124.0
8(9 ⁵ / ₈)	2~14	11.00	279.4	4.88	124.0

HP GRE FITTINGS - 45 DEGREE ELBOWS

45 45 Deg Elbow

API SPEC 5B Inside thread standard: API SPEC 5B

			,	4	E	
Dian	neter	Pressure				
(in)	(mm)	(MPa)	(in)	(mm)	(in)	(mm)
11/2		7	3.125	79.4	2.25	57.2
11/2		8.5~14	3.125	79.4	2.25	57.2
11/2	40	17	3.125	79.4	2.25	57.2
1 ¹ / ₂		18~20	3.125	79.4	2.25	57.2
11/2		22~25	3.125	79.4	2.25	57.2
2		7	4.250	108.0	2.69	68.3
2		8.5	4.250	108.0	2.69	68.3
2	50	10~14	4.250	108.0	2.69	68.3
2	30	17	4.250	108.0	2.69	68.3
2		18~20	4.250	108.0	2.69	68.3
2		22~25	4.250	108.0	2.69	68.3
2 ¹ / ₂		7	4.625	117.5	3.00	76.2
21/2		8.5	4.625	117.5	3.00	76.2
21/2	65	10~14	4.625	117.5	3.00	76.2
21/2	03	17	4.625	117.5	3.00	76.2
21/2		18~20	4.625	117.5	3.00	76.2
21/2		22~25	4.625	117.5	3.00	76.2
3		7	5.500	139.7	3.25	82.6
3		8.5	5.500	139.7	3.25	82.6
3	80	10~14	5.500	139.7	3.25	82.6
3	00	17	5.500	139.7	3.25	82.6
3		18~20	5.500	139.7	3.25	82.6
3		22~25	5.500	139.7	3.25	82.6
4		7	6.000	152.4	4.13	104.9
4		8.5	6.000	152.4	4.13	104.9
4	100	10~14	6.000	152.4	4.13	104.9
4	100	17	6.000	152.4	4.13	104.9
4		18~20	6.000	152.4	4.13	104.9
4		22~25	6.000	152.4	4.13	104.9
6		5.5	7.625	193.7	4.00	101.6
6		8.5	7.625	193.7	4.00	101.6
6	150	10	7.625	193.7	4.00	101.6
6		12~14	7.625	193.7	4.63	117.6
6		17	7.625	193.7	4.63	117.6
8(8 ⁵ / ₈)		5.5	7.250	184.2	4.50	114.3
8(8 ⁵ / ₈)		8.5	7.250	184.2	4.50	114.3
8(8 ⁵ / ₈)	200	10	7.250	184.2	4.50	114.3
8(9 ⁵ / ₈)		10	7.375	187.3	4.88	124.0
8(9 ⁵ / ₈)		12~14	7.375	187.3	4.88	124.0

HP GRE FITTINGS - TEES

API SPEC 5B Inside thread standard: API SPEC 5B

			A	4	Е	3	E	
Diam	neter	Pressure	(in)	(mm)	(in)	(mm)	(in)	(mm)
(in)	(mm)	(MPa)	("")	(111111)	(111)	(111111)	(111)	(11111)
1 ¹ / ₂		7~14	4.375	111.1	4.875	123.8	2.25	57.2
1 ¹ / ₂	40	17	4.375	111.1	4.875	123.8	2.25	57.2
11/2		18~20	4.375	111.1	4.875	123.8	2.25	57.2
11/2		22~25	4.375	111.1	4.875	123.8	2.25	57.2
2		8.5	5.250	133.4	5.75	146.1	2.69	68.3
2		12~14	5.250	133.4	5.75	146.1	2.69	68.3
2	50	17	5.250	133.4	5.75	146.1	2.69	68.3
2		18~20	5.250	133.4	5.75	146.1	2.69	68.3
2		22~25	5.250	133.4	5.75	146.1	2.69	68.3
2 ¹ / ₂		5.5~8.5	5.750	146.1	6.50	165.1	3.00	76.2
2 ¹ / ₂		10	5.750	146.1	6.50	165.1	3.00	76.2
2 ¹ / ₂	65	12~17	5.750	146.1	6.50	165.1	3.00	76.2
2 ¹ / ₂		18~20	5.750	146.1	6.50	165.1	3.00	76.2
2 ¹ / ₂		22~25	5.750	146.1	6.50	165.1	3.00	76.2
3		3.5~8.5	6.50	165.1	7.25	184.2	3.25	82.6
3		12~14	6.50	165.1	7.25	184.2	3.25	82.6
3	80	17	6.50	165.1	7.25	184.2	3.25	82.6
3		18~20	6.50	165.1	7.25	184.2	3.25	82.6
3		22~25	6.50	165.1	7.25	184.2	3.25	82.6
4		3.5~8.5	7.25	184.2	8.25	209.6	4.13	104.9
4		12~14	7.25	184.2	8.25	209.6	4.13	104.9
4	100	17	7.25	184.2	8.25	209.6	4.13	104.9
4		18~20	7.25	184.2	8.25	209.6	4.13	104.9
4		22~25	7.25	184.2	8.25	209.6	4.13	104.9
6		3.5~5.5	9.75	247.7	10.5	266.7	4.63	117.6
6	150	8.5	9.75	247.7	10.5	266.7	4.63	117.6
6	150	12~14	9.75	247.7	10.5	266.7	4.63	117.6
6		17	9.75	247.7	10.5	266.7	4.63	117.6
8(8 ⁵ / ₈)		3.5~5.5	10.00	254.0	11.0	279.4	4.50	114.3
8(8 ⁵ / ₈)		7~8.5	10.00	254.0	11.0	279.4	4.50	114.3
8(8 ⁵ / ₈)	200	10	10.00	254.0	11.0	279.4	4.50	114.3
8(9 ⁵ / ₈)		10	10.50	266.7	13.0	330.2	4.88	124.0
8(9 ⁵ / ₈)		12~14	10.50	266.7	13.0	330.2	4.88	124.0

HP GRE FITTINGS - FLANGE

API SPEC 5B read standard: API SPEC 5B

	Diam	neter	Pressure	(ANSI)	D	1	DolA		of bolt ble	[)	7	Γ
	(in)	(mm)	(MPa)	(ANSI)	(in)	(mm)	Bolt hole Qty	(in)	(mm)	(in)	(mm)	(in)	(mm)
	11/2	40	7~10	600	4.50	114.3	4	⁷ / ₈	22	6.125	155.6	2.56	65.0
	11/2	40	12~25	1500	4.875	123.8	4	1 ¹ / ₈	29	7.00	177.8	2.56	65.0
	2	50	5.5~10	600	5.00	127.0	8	³ / ₄	19	6.50	165.1	3.06	77.7
	2	50	12~25	1500	6.50	165.1	8	1.0	25	8.50	215.9	3.06	77.7
	2 ¹ / ₂	05	5.5~10	600	5.875	149.2	8	⁷ / ₈	22	7.50	190.5	3.38	85.9
	21/2	65	12~25	1500	7.50	190.5	8	1 ¹ / ₈	29	9.625	244.5	3.38	85.9
	3		3.5~10	600	6.625	168.3	8	⁷ / ₈	22	8.25	209.6	3.63	92.2
	3	80	12~14	900	7.50	190.5	8	1.0	25	9.50	241.3	3.63	92.2
3	3		17~25	1500	8.00	203.2	8	1 ¹ / ₄	32	10.50	266.7	3.63	92.2
	4		3.5	300	7.875	200.0	8	⁷ / ₈	22	10.00	254.0	4.50	114.3
	4	- 100	5.5~10	600	8.50	215.9	8	1.0	25	10.75	273.1	4.50	114.3
	4		12~14	900	9.25	235.0	8	1 ¹ / ₄	32	11.50	292.1	4.50	114.3
	4*		17~25	1500	9.50	241.3	8	1 ³ / ₈	35	12.25	311.2	4.50	114.3
	6		3.5	300	10.625	269.9	12	⁷ / ₈	22	12.50	317.5	5.00	127.0
ĺ	6	450	5.5~10	600	11.50	292.1	12	1 ¹ / ₈	28.6	14.00	355.6	5.00	127.0
	6*	150	12~14	900	12.50	317.5	12	1 ¹ / ₄	32	15.00	381.0	5.00	127.0
	6		17	1500	12.50	317.5	12	1 ¹ / ₂	38	15.50	393.7	5.00	127.0
	8(8 ⁵ / ₈)		3.5	300	13.00	330.2	12	1.0	25	15.00	381.0	5.00	127.0
	8(8 ⁵ / ₈)		5.5~10	600	13.75	349.3	12	1 ¹ / ₄	32	16.50	419.1	5.00	127.0
	8(9 ⁵ / ₈)	200	3.5	300	13.00	330.2	12	1.0	25	15.00	381.0	5.25	133.4
	8(9 ⁵ / ₈)		10	600	13.75	349.3	12	1 ³ / ₄	32	16.50	419.1	5.25	133.4
	8(9 ⁵ / ₈)*		12~14	900	15.50	393.7	12	11/2	38	18.50	469.9	5.25	133.4

HP GRE FITTINGS - COUPLING

API SPEC 5B Inside thread standard: API SPEC 5B

Dian	neter	Pressure	Length of	Coupling	OD of (Coupling
(in)	(mm)	(MPa)	(in)	(mm)	(in)	(mm)
11/2	,	12~14	5.125	130.2	2.80	71.1
11/2		17	5.125	130.2	2.90	73.7
11/2	40	20	5.125	130.2	3.05	77.5
11/2		22	5.125	130.2	3.15	80.0
11/2		25	5.125	130.2	3.30	83.8
2		10	6.126	155.6	3.25	82.6
2		12~14	6.126	155.6	3.40	86.4
2		17	6.126	155.6	3.60	91.4
2	50	20	6.126	155.6	3.70	94.0
2	1	22	6.126	155.6	3.90	99.1
2		25	6.126	155.6	4.10	104.1
2 ¹ / ₂		10	6.750	171.5	3.80	96.5
21/2		12~14	6.750	171.5	4.00	101.6
2 ¹ / ₂	65	17	6.750	171.5	4.20	106.7
21/2	65	20	6.750	171.5	4.40	111.8
21/2		22	6.750	171.5	4.60	116.8
2 ¹ / ₂		25	6.750	171.5	4.80	121.9
3		10	7.250	184.2	4.60	116.8
3	80	12~14	7.250	184.2	4.80	121.9
3		17	7.250	184.2	5.10	129.5
3		20	7.250	184.2	5.25	133.4
3		22	7.250	184.2	5.50	139.7
3		25	7.250	184.2	5.75	146.1
4		10	9.000	228.6	5.80	147.3
4		12~14	9.000	228.6	6.10	154.9
4	100	17	9.000	228.6	6.40	162.6
4		20	9.000	228.6	6.70	170.2
4		22	9.000	228.6	7.00	177.8
4		25	9.000	228.6	7.20	182.9
6		5.5	10.00	254.0	7.85	199.4
6		7	10.00	254.0	8.00	203.2
6	150	8.5	10.00	254.0	8.20	208.3
6		10	10.00	254.0	8.40	213.4
6		12~14	10.00	254.0	8.75	222.3
6		17	10.00	254.0	9.20	233.7
8(8 ⁵ / ₈)		5.5	10.00	254.0	9.50	241.3
8(8 ⁵ / ₈)		7	10.00	254.0	9.70	246.4
8(8 ⁵ / ₈)		8.5	10.00	254.0	10.00	254.0
8(8 ⁵ / ₈)	200	10	10.00	254.0	10.20	259.1
8(9 ⁵ / ₈)	200	5.5	10.50	266.7	10.70	271.8
8(9 ⁵ / ₈)		7	10.50	266.7	10.90	276.9
8(9 ⁵ / ₈)		8.5	10.50	266.7	11.10	281.9
8(9 ⁵ / ₈)		10 12~14	10.50	266.7	11.50	292.1
8(9 ⁵ / ₈)		12~14	10.50	266.7	11.90	302.3

HP GRE FITTINGS -THREAD FOR REPAIR

Thread for repair

API SPEC 5B
Inside thread standard: API SPEC 5B

Dian	neter		Ler	ngth
(in)	(mm)	Туре	(in)	(mm)
1 ¹ / ₂		Α	3.0	76
11/2	1	В	3.0	76
11/2	1	С	3.0	76
111/2	40	D1	3.0	76
111/2	1	D	3.0	76
111/2		E	3.0	76
111/2	1	F	3.0	76
2		A	3.8	95
2	1	В	3.5	95
2	1	B1	3.5	95
2	50	C	3.5	95
2	30		3.5	95
2	1	C1		95
		D1	3.5	
2		D	3.5	95
21/2		A	4.0	102
21/2		В	4.0	102
2 ¹ / ₂		B1	4.0	102
21/2	65	С	4.0	102
2 ¹ / ₂		C1	4.0	102
21/2		D1	4.0	102
2 ¹ / ₂		D	4.0	102
3		Α	4.3	108
3]	В	4.3	108
3		С	4.3	108
3		C2	4.3	108
3]	C1	4.3	108
3	80	D	4.3	108
3	1	D1	4.3	108
3	1	E2	4.3	108
3	1	Е	4.3	108
3	1	E1	4.3	108
3	1	F	4.3	108
4		А	4.4	110
4	1	В	4.4	110
4		B1	4.4	110
4		С	4.4	110
4	1	C1	4.4	110
4	100	D	4.4	110
4	100	D1	4.4	110
4		D3	4.4	110
4		E	4.4	110
4	1	D2	4.4	110
4	-	F	4.4	110
6		A	4.3	108
6		B B4	4.3	108
6		B1	4.3	108
6		С	4.3	108
6	150	C1	4.3	108
6		D	4.3	108
6		D1	4.3	108
6		E	4.3	108
6		E1	4.3	108
6		F	4.3	108
8		Α	5.6	142
8		В	5.6	142
8		С	5.6	142
8	200	D	5.6	142
8	200	E	5.6	142
8		F	5.6	142
8		G	5.6	142
8		Н	5.6	142
		.,		

(iii)	Diameter		Pressure	Туре		
4 100 3.5 C 6 150 3.5 B1 8 200 3.5 B1 2.5 65 5.5 C1 3 80 5.5 C1 3 80 5.5 C1 4 100 5.5 C 6 150 5.5 C1 11/1 ₂ 40 7 F 2 50 7 B1 21/1 ₂ 40 7 F 2 50 7 C1 3 80 7 C 4 100 7 C,B1 6 150 7 C 4 100 7 C,B1 6 150 7 C 8 200 7 F 8 200 7 F 8 2 50 8.5 B1 21/1 ₂ 40 8.5 F 2 2 50 8.5 B1 21/1 ₂ 40 8.5 B1 21/1 ₂ 65 8.5 C1 3 80 0 8.5 B1 21/1 ₂ 65 8.5 C1 3 80 0 10 C1 4 100 10 C1 6 150 10 E1 8 200 10 D1 21/1 ₂ 40 12 F 2 50 12 C1 21/1 ₂ 65 12 C1 4 100 12 B1 6 150 12 E 8 200 12 C1 11/1 ₂ 40 14 F 2 50 14 C1 21/1 ₂ 65 14 B1 3 80 14 C2 4 100 14 B1 3 80 14 C2 4 100 14 B1 11/1 ₂ 40 17 E 2 50 18 C1 11/1 ₂ 40 17 E 2 50 17 D1 11/1 ₂ 40 17 E 2 50 18 C2 11/1 ₂ 65 18 D1		(mm)	(MPa)			
6 150 3.5 B1 8 200 3.5 H 2 50 5.5 B1 2 50 5.5 B1 2 50 5.5 C1 3 80 5.5 C1 3 80 5.5 C1 4 100 5.5 C 6 150 5.5 C1 11/2 40 7 F 2 50 7 B1 2 2/2 65 7 C1 3 80 7 C 3 80 7 C 4 100 7 C,B1 6 150 7 C 8 200 7 F 8 200 7 F 8 200 7 F 8 200 7 F 11/2 40 8.5 F 2 2 50 8.5 B1 2 2/2 65 8.5 C1 3 80 8.5 B1 2 2/2 65 8.5 B1 8 200 8.5 B 6 150 8.5 B1 8 200 8.5 E 11/2 40 10 F 2 50 10 D1 2 2/2 66 10 C1 3 80 10 D,D1 4 100 10 C 6 150 10 E1 8 200 10 D 11/2 40 12 F 2 50 12 D1 2 2/2 65 12 C 3 80 12 C1 3 80 14 C2 4 100 14 F 8 200 12 E 8 200 14 F 8 200 15 E 8 200 17 F 8 200 14 B1 8 11 C2 4 100 14 B1 8 11 C2 11/2 40 17 E 8 2 50 17 D1 11/2 40 18 E 8 200 14 B1 8 C,C1 11/2 40 18 E 8 200 17 C1 11/2 40 18 E 8 200 14 B1 11/2 40 18 E 8 200 14 B1 11/2 40 17 E 8 2 50 17 D1 11/2 40 18 E 8 200 14 B1 11/2 40 17 E 8 2 50 17 D1 11/2 40 18 E 8 200 C1 11/2 40 18 E 8 200 C1 11/2 40 18 E 8 200 C1 11/2 40						
8 200 3.5 H 2 50 5.5 B1 2.5 65 5.5 C1 3 80 5.5 C 4 100 5.5 C 6 150 5.5 C1 11/12 40 7 F 2 2 50 7 B1 21/12 65 7 C1 3 80 7 C 4 100 7 C,B1 6 150 7 C 8 200 7 F 11/12 40 8.5 F 2 2 50 8.5 B1 22/12 65 8.5 C1 3 80 0 7 C 8 200 7 F 11/12 40 8.5 F 2 2 50 8.5 B1 22/12 65 8.5 C1 3 80 8.5 C1 4 100 8.5 B1 8 200 8.5 E 11/12 40 10 F 2 50 10 D1 21/12 65 10 C1 3 80 10 C1 4 100 10 C 6 150 10 E1 8 200 10 D 11/12 40 12 F 2 50 12 C1 4 100 12 B1 6 150 12 E 8 200 14 F 2 50 14 C1 2 1/12 40 14 F 2 50 14 C1 2 1/12 40 14 F 2 50 14 C1 2 1/12 40 14 F 3 8 200 14 B1 8 10 6 150 14 B1 8 10 6 150 14 B1 8 200 14 B1 8 C2 50 18 C,C1 21/12 40 18 E 2 50 C1 3 80 B2 CC1 3 80 B2 CC1 3 80 B2 CC1						
2 50 5.5 B1 2.5 65 5.5 C1 3 80 5.5 C 4 100 5.5 C 6 150 5.5 C1 11/2 40 7 F 2 50 7 B1 22/2 65 7 C1 3 80 7 C 4 100 7 C,B1 6 150 7 C 8 200 7 F 8 2 50 8.5 B1 6 150 7 C 8 22/2 65 8.5 C1 11/2 40 8.5 F 2 50 8.5 B1 2 2/2 65 8.5 C1 3 80 8.5 C1 4 100 8.5 B1 8 200 8.5 E 11/2 40 10 F 2 2 50 10 D1 2 1/2 40 10 C1 3 80 10 D,D1 4 100 10 C C 6 150 10 E1 8 200 10 E1 9 1/2 40 12 E 10 C1 11/2 40 14 F 12 C1 11/2 40 17 E 11/2 40 1						
2.5 65 5.5 C1 3 80 5.5 C 4 100 5.5 C 6 150 5.5 C1 11/2 40 7 F 2 50 7 B1 2 1/2 65 7 C1 3 80 7 C 4 100 7 C,B1 6 150 7 C 8 200 7 F 11/2 40 8.5 F 2 2 50 8.5 B1 2 1/2 65 8.5 C1 3 80 8.5 B1 2 1/2 65 8.5 B1 2 1/2 65 8.5 B1 2 1/2 65 8.5 B1 8 200 8.5 C1 3 80 8.5 C2 4 100 8.5 B1 8 200 8.5 B1 8 200 8.5 B2 1 1/2 40 10 F 2 50 10 D1 2 1/2 65 10 C1 3 80 10 D,D1 4 100 10 C 6 150 10 E1 8 200 10 D 1 1/2 40 12 F 2 2 50 12 D1 2 1/2 65 12 C1 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 12 C1 4 100 14 F 2 50 14 C1 3 80 14 C2 4 100 14 D 6 150 14 F 8 200 14 C1 2 50 14 C1 3 80 14 C2 4 100 14 D 6 150 14 F 8 200 14 C1 2 50 14 C1 2 50 14 C1 2 50 14 C1 2 50 14 C1 3 80 14 C2 4 100 17 F 6 150 17 D 3 80 17 C1 2 1/2 65 17 D 3 80 17 C1 3 80 17 C1 3 80 17 C1 3 80 17 C1 3 80 17 E,E1 4 100 17 F 6 150 17 D 1 1/2 40 18 E 2 50 18 C,C1 2 1/2 65 18 D1 3 80 18 E2,D1 4 100 18 D2 2 50 C1 2 1/2 65 20 C1		200		Н		
3 80 5.5 C 4 100 5.5 C 6 150 5.5 C 111/2 40 7 F 2 50 7 B1 21/2 65 7 C 3 80 7 C 4 100 7 C 8 10 7 C 8		50	5.5	B1		
4 100 5.5 C 6 150 5.5 C1 11/12 40 7 F 2 2 50 7 B1 21/12 65 7 C1 3 80 7 C 4 100 7 C,B1 6 150 7 C 8 200 7 F 8 200 7 F 8 3 200 7 F 8 4 100 8.5 B1 21/12 65 8.5 C1 3 80 8.5 C1 3 80 8.5 C1 3 80 8.5 C1 3 80 8.5 B1 6 150 8.5 B1 8 200 8.5 B1 8 200 8.5 B1 8 200 8.5 E 11/12 40 10 F 8 20 10 D1 21/12 65 10 C1 3 80 10 D,D1 4 100 10 C 6 150 10 E1 8 200 10 D 11/12 40 12 F 2 50 12 D1 21/12 65 12 C 3 80 12 C1 3 80 12 C1 4 100 12 B1 6 150 12 B1 6 150 12 B1 6 150 12 B1 6 150 14 F 2 50 14 C1 21/12 40 14 F 2 50 14 C1 21/12 40 14 F 2 50 14 C1 3 80 14 C2 4 100 14 B1 3 80 14 C2 4 100 17 E 8 200 14 C1 21/12 40 14 F 2 50 14 C1 21/12 40 14 F 2 50 14 C1 21/12 65 14 B1 3 80 14 C2 4 100 14 B1 11/12 40 17 E 8 200 14 B1 11/12 40 17 E 9 50 17 C1 11/12 40 17 E 9 50 17 C1 11/12 40 17 E 11/12 40 17 E 11/12 40 18 E 11/12 40 17 E 11/12 40 18 E 11/12 40 17 E 11/12 40 18 D 11/12 40 D 11/12	2.5	65	5.5	C1		
6 150 5.5 C1 1 1 1 2 40 7 F 2 50 7 B1 2 1 65 7 C1 3 80 7 C 4 100 7 C,B1 6 150 7 C 8 200 7 F 8 200 7 F 1 1 2 40 8.5 F 2 2 50 8.5 B1 2 1 2 6 5 8.5 C1 3 80 8.5 E 2 1 50 8.5 B1 2 1 2 6 5 8.5 C1 3 80 8.5 E 4 100 8.5 B 6 150 8.5 B1 8 200 8.5 E 1 1 2 40 10 F 2 50 10 D1 2 1 2 65 10 C1 3 80 10 D,D1 4 100 10 C 6 150 10 E1 8 200 10 D1 1 1 2 F 2 50 12 D1 2 1 2 C 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 12 C1 4 100 12 B1 6 150 12 E 8 200 12 C1 4 100 14 F 2 50 14 C1 2 50 14 C1 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 12 C1 4 100 14 F 8 200 12 E 8 200 12 C1 4 100 14 F 8 200 14 F 8 200 14 F 8 200 14 F 8 200 14 B1 8	3	80	5.5	С		
11/2	4	100	5.5	С		
11/2	6	150	5.5	C1		
2 50 7 B1 2 1/2 65 7 C1 3 80 7 C C1 4 100 7 C,B1 6 150 7 C 8 200 7 F 1 1/2 40 8.5 F 2 50 8.5 B1 2 1/2 65 8.5 C1 3 80 8.5 C 4 100 8.5 B 6 150 8.5 B 6 150 8.5 B 6 150 8.5 B 6 150 8.5 B 7 C 8 200 8.5 B 7 C 8 200 8.5 B 8 200 8.5 B 9 C 1 1/2 40 10 F 1 1/2 40 10 F 1 1/2 65 10 C1 1 3 80 10 D,D1 2 1/2 65 10 C1 3 80 10 D,D1 4 100 10 C 6 150 10 E1 8 200 10 E1 8 200 10 D 1 1/2 40 12 F 2 50 12 D1 2 1/2 65 12 C 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 12 C 1 1/2 40 14 F 2 50 14 C1 2 1/2 65 14 B1 3 80 14 C2 4 100 14 B 1 1/2 40 17 E 2 50 17 C1 2 1/2 65 17 D 3 80 17 E,E1 4 100 17 F 6 150 17 D1 1 1/2 40 18 E 2 50 18 C,C1 2 1/2 65 18 D1 3 80 18 E2,D1 4 100 18 D2 2 50 C1 3 80 20 D1,D 4 100 C0 5 C1 3 80 C1 5 C	1 ¹ / ₂					
2 ¹ / ₂ 65 7 C1 3 80 7 C 4 100 7 C,B1 6 150 7 C 8 200 7 F 1 ¹ / ₂ 40 8.5 F 2 50 8.5 B1 2 ¹ / ₂ 65 8.5 C1 3 80 8.5 C 4 100 8.5 B 6 150 8.5 B1 8 200 8.5 B1 8 200 8.5 E 1 ¹ / ₂ 40 10 F 2 50 10 D1 2 ¹ / ₂ 65 10 C1 3 80 10 C1 4 100 D1 2 ¹ / ₂ 65 10 C1 3 80 10 C1 3 80 10 C1 4 100 D1 6 150 10 E1 8 200 10 D 1 ¹ / ₂ 40 12 F 2 50 12 D1 2 ¹ / ₂ 65 12 C 3 80 12 C1 4 100 12 E1 6 150 12 E 8 200 12 C1 3 80 12 C1 4 100 12 C1 4 100 12 C1 4 100 12 C1 4 100 12 C1 5 14 C1 8 200 14 F 2 50 14 C1 8 200 15 C1 8 200 16 C1 8 200 17 C1 8 2 ¹ / ₂ 65 14 B1 8 200 14 F 2 50 14 C1 3 80 14 C2 4 100 14 F 8 200 15						
3 80 7 C 4 100 7 C,B1 6 150 7 C 8 200 7 F 1 ¹ / ₂ 40 8.5 F 2 50 8.5 B1 2 ¹ / ₂ 65 8.5 C1 3 80 8.5 B 6 150 8.5 B1 8 200 8.5 B 6 150 8.5 B1 8 200 8.5 E 1 ¹ / ₂ 40 10 F 2 50 10 D1 2 ¹ / ₂ 65 10 C1 3 80 10 D,D1 3 80 10 D,D1 4 100 10 C 6 150 10 E1 8 200 10 D 11 ¹ / ₂ 40 12 F 2 50 12 D1 2 ¹ / ₂ 65 12 C 3 80 12 C1 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 12 C1 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 14 F 1 2 50 14 C1 2 50 14 C1 3 8 200 15 C1 3 80 17 C1 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 14 F 2 50 14 C1 2 50 14 C1 3 80 14 C1 2 50 14 C1 3 80 14 C2 4 100 14 B1 3 80 14 C2 5 50 17 D 6 150 17 E,E1 4 100 17 F 6 150 17 D 7 C1 2 50 18 D1 7 C1 2 50 18 C,C1 2 50 18 D1 7 C1 2 50 18 C,C1 2 50 18 D1 7 E,E1 7 D 7 S C,C1 2 50 18 D1 7 C1 2 50 C1 7 D1 7 C1 7 C						
4 100 7 C,B1 6 150 7 C 8 200 7 F 1/1/2 40 8.5 F 2 50 8.5 B1 2/1/2 65 8.5 C1 3 80 8.5 C 4 100 8.5 B 6 150 8.5 B1 8 200 8.5 E 1/1/2 40 10 F 2/2 50 10 D1 2/1/2 65 10 C1 3 80 10 D,D1 4 100 10 C 6 150 10 E1 8 200 10 D 1/1/2 40 12 F 2 50 12 D1 2/1/2 65 12 C 3 80						
6						
8 200 7 F 1 ¹ / ₂ 40 8.5 F 2 50 8.5 B1 2 ¹ / ₂ 65 8.5 C1 3 80 8.5 B 6 150 8.5 B1 8 200 B2 10 C1 2 50 10 C1 3 80 10 C1 3 80 10 C1 3 80 10 C1 3 80 10 D,D1 4 100 10 C 6 150 10 E1 8 200 10 D 1 ¹ / ₂ 40 12 F 2 50 12 C1 3 80 12 C1 4 100 12 B1 6 150 12 B1 6 150 12 E 8 200 12 C1 4 100 12 B1 6 150 12 E 8 200 12 C1 4 100 14 F 2 1 C C 1 ¹ / ₂ 40 14 F 2 2 50 14 C1 2 1/ ₂ 65 14 B1 3 80 14 C2 4 100 14 B1 3 80 14 C2 4 100 14 B1 6 150 14 B1 3 80 14 C2 4 100 17 E 6 150 17 C1 2 1/ ₂ 65 17 D 3 80 17 E,E1 4 100 17 F 6 150 17 D1 1 1/ ₂ 40 18 E 2 2 50 18 D1 3 80 18 E2,D1 4 100 18 D2 1 1/ ₂ 40 D 1 1/ ₂ 40 D 1 1 1/ ₂ 40 D 1 1 1/ ₂ 40 D 1 1 1 1 1/ ₂ 40 D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
11/12						
2						
2¹/₂ 65 8.5 C1 3 80 8.5 C 4 100 8.5 B 6 150 8.5 B1 8 200 8.5 E 1¹/₂ 40 10 F 2 50 10 D1 2¹/₂ 65 10 C1 3 80 10 D,D1 4 100 10 C 6 150 10 E1 8 200 10 D 10 E1 D D 110 E1 D D 110 D D						
3 80 8.5 C 4 100 8.5 B 6 150 8.5 B1 8 200 8.5 E 11/12 40 10 F 2 50 10 D1 21/12 65 10 C1 3 80 10 D,D1 4 100 10 C 6 150 10 E1 8 200 10 D 11/12 40 12 F 2 50 12 D1 21/2 65 12 C 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 12 E 8 200 12 C 11/2 40 14 F 2 50 14						
4 100 8.5 B 6 150 8.5 B1 8 200 8.5 E 1½2 40 10 F 2 50 10 D1 2½2 65 10 C1 3 80 10 D,D1 4 100 10 C 6 150 10 E1 8 200 10 D 1½2 40 12 F 2 50 12 D1 2½½2 65 12 C 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 12 E 8 200 12 E 8 200 14 F 2 50 14 B1 3 80 14						
6 150 8.5 B1 8 200 8.5 E 1 1 1 2 40 10 F 2 50 10 D1 2 1 2 65 10 C1 3 80 10 D,D1 4 100 10 E1 8 200 10 E1 8 2 50 12 E 2 50 12 E 2 50 12 E 3 80 12 C1 4 100 12 E 8 200 14 F 6 150 12 E 8 200 14 F 7 C1 2 1 2 65 14 B1 3 80 14 C2 4 100 14 E 3 8 200 14 E 2 50 14 E 3 8 200 14 E 3 8 8 14 C2 4 100 14 E 3 8 8 14 C2 4 100 14 E 6 150 14 B1 3 8 14 C2 4 100 14 B 8 1						
8 200 8.5 E 11/12 40 10 F 2 50 10 D1 21/12 65 10 C1 3 80 10 D,D1 4 100 10 C 6 150 10 E1 8 200 10 D 11/12 40 12 F 2 50 12 D1 21/12 65 12 C 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 12 E 8 200 12 C 11/12 40 14 F 2 50 14 B1 3 80 14 C2 4 100 14 B 11/12 40 <td< td=""><td></td><td></td><td></td><td></td></td<>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
2 50 10 D1 2 ¹ / ₂ 65 10 C1 3 80 10 D,D1 4 100 10 E1 8 200 10 D 1 ¹ / ₂ 40 12 F 2 50 12 D1 2 ¹ / ₂ 65 12 C 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 12 C 1 ¹ / ₂ 40 14 F 2 50 14 C1 2 ¹ / ₂ 65 14 B1 3 80 14 C2 4 100 14 B 2 ¹ / ₂ 65 14 B1 3 80 14 C2 4 100 14 B 8 2	8					
2 50 10 D1 2 ¹ / ₂ 65 10 C1 3 80 10 D,D1 4 100 10 E1 8 200 10 D 1 ¹ / ₂ 40 12 F 2 50 12 D1 2 ¹ / ₂ 65 12 C 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 12 C 1 ¹ / ₂ 40 14 F 2 50 14 C1 2 ¹ / ₂ 65 14 B1 3 80 14 C2 4 100 14 B 2 ¹ / ₂ 65 14 B1 3 80 14 C2 4 100 14 B 8 2		40	10	F		
3 80 10 D,D1 4 100 10 C 6 150 10 E1 8 200 10 D 1 ¹ / ₂ 40 12 F 2 50 12 D1 2 ¹ / ₂ 65 12 C 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 12 C 1 ¹ / ₂ 40 14 F 2 50 14 C1 2 ¹ / ₂ 65 14 B1 3 80 14 C2 4 100 14 D 6 150 14 F 8 200 14 B 1 ¹ / ₂ 40 17 E 2 50 17 D 8 200	2	50	10	D1		
3 80 10 D,D1 4 100 10 C 6 150 10 E1 8 200 10 D 1 ¹ / ₂ 40 12 F 2 50 12 D1 2 ¹ / ₂ 65 12 C 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 12 C 1 ¹ / ₂ 40 14 F 2 50 14 C1 2 ¹ / ₂ 65 14 B1 3 80 14 C2 4 100 14 D 6 150 14 F 8 200 14 B 1 ¹ / ₂ 40 17 E 2 50 17 D 8 200	2 ¹ / ₂	65	10	C1		
6 150 10 E1 8 200 10 D 1 1 1 2 F 2 50 12 D1 2 1 2 C 3 80 12 C1 4 100 12 E 8 200 12 C1 4 100 12 E 8 200 12 C1 4 100 12 E 8 200 12 C1 1 4 100 12 E 8 1 C C 1 1 4 F 2 50 14 F 2 50 14 C1 2 1 65 14 B1 3 80 14 C2 4 100 14 F 3 80 14 C2 4 100 14 F 8 100 14 F 8 100 14 F 8 200 17 C1 2 1 6 5 17 D 1		80	10	D,D1		
8 200 10 D 1 ¹ / ₂ 40 12 F 2 50 12 D1 2 ¹ / ₂ 65 12 C 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 12 C 1 ¹ / ₂ 40 14 C1 2 ¹ / ₂ 65 14 B1 3 80 14 C2 4 100 14 B 6 150 14 F 8 200 14 F 8 200 14 B 1 ¹ / ₂ 40 17 E 2 50 17 D 3 80 17 E,E1 4 100 17 F 6 150 17 D1 1 ¹ / ₂ 40	4	100	10	С		
8 200 10 D 1 ¹ / ₂ 40 12 F 2 50 12 D1 2 ¹ / ₂ 65 12 C 3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 12 C 1 ¹ / ₂ 40 14 C1 2 ¹ / ₂ 65 14 B1 3 80 14 C2 4 100 14 B 6 150 14 F 8 200 14 F 8 200 14 B 1 ¹ / ₂ 40 17 E 2 50 17 D 3 80 17 E,E1 4 100 17 F 6 150 17 D1 1 ¹ / ₂ 40	6					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
3 80 12 C1 4 100 12 B1 6 150 12 E 8 200 12 C 1 ¹ / ₂ 40 14 F 2 50 14 C1 2 ¹ / ₂ 65 14 B1 3 80 14 C2 4 100 14 D 6 150 14 F 8 200 14 B 1 ¹ / ₂ 40 17 E 2 50 17 C1 2 ¹ / ₂ 65 17 D 3 80 17 E,E1 4 100 17 F 6 150 17 D1 1 ¹ / ₂ 40 18 E 2 50 18 C,C1 2 ¹ / ₂ 65 18 D1 3						
4 100 12 B1 6 150 12 E 8 200 12 C 1 ¹ / ₁₂ 40 14 F 2 50 14 C1 2 ¹ / ₂ 65 14 B1 3 80 14 C2 4 100 14 D 6 150 14 F 8 200 14 B 1 ¹ / ₂ 40 17 E 2 50 17 C1 2 ¹ / ₂ 65 17 D 3 80 17 E,E1 4 100 17 F 6 150 17 D1 1 ¹ / ₂ 40 18 E 2 50 18 D1 3 80 18 E2,D1 4 100 18 D2 1 ¹ / ₂ <						
6 150 12 E 8 200 12 C 1 ¹ / ₂ 40 14 F 2 50 14 C1 2 ¹ / ₂ 65 14 B1 3 80 14 C2 4 100 14 F 8 200 17 E 17 C1 2 ¹ / ₂ 40 17 E 2 ¹ / ₂ 65 17 D 3 80 17 E,E1 4 100 17 F 6 150 17 D1 1 E,E1 1 100 17 F 1 100 17 F 1 100 17 F 1 100 18 E 1 100 18 E 1 100 18 D1 1 100 18 D2 1 100 D1 1 100 D2 1 100 D1 1 100 D1 1 100 D2 1 100 D1 1 100						
8 200 12 C 11/12 40 14 F 2 50 14 C1 21/12 65 14 B1 3 80 14 C2 4 100 14 D 6 150 14 F 8 200 14 B 11/12 40 17 E 2 50 17 C1 21/12 65 17 D 3 80 17 E,E1 4 100 17 F 6 150 17 D1 11/2 40 18 E 2 50 18 C,C1 21/12 65 18 D1 3 80 18 E2,D1 4 100 18 D2 11/12 40 20 D 2 50						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
3 80 14 C2 4 100 14 D 6 150 14 F 8 200 14 B 1 ¹ / ₂ 40 17 E 2 50 17 C1 2 ¹ / ₂ 65 17 D 3 80 17 E,E1 4 100 17 F 6 150 17 D1 1 ¹ / ₂ 40 18 E 2 50 18 C,C1 2 ¹ / ₂ 65 18 D1 3 80 18 E2,D1 4 100 18 D2 1 ¹ / ₂ 40 20 D 2 50 20 C1 2 ¹ / ₂ 65 20 C1 2 ¹ / ₂ 65 20 C1 3 80 20 D1,D 4						
4 100 14 D 6 150 14 F 8 200 14 B 1 ¹ / ₁₂ 40 17 E 2 50 17 C1 2 ¹ / ₂ 65 17 D 3 80 17 E,E1 4 100 17 F 6 150 17 D1 1 ¹ / ₁₂ 40 18 E 2 50 18 C,C1 2 ¹ / ₂ 65 18 D1 3 80 18 E2,D1 4 100 18 D2 1 ¹ / ₂ 40 20 D 2 50 20 C1 2 ¹ / ₂ 65 20 C1 2 ¹ / ₁₂ 65 20 C1 3 80 20 D1,D 4 100 20 E						
6 150 14 F 8 200 14 B 11/12 40 17 E 2 50 17 C1 21/12 65 17 D 3 80 17 E,E1 4 100 17 F 6 150 17 D1 11/12 40 18 E 2 50 18 C,C1 21/12 65 18 D1 3 80 18 E2,D1 4 100 18 D2 11/12 40 20 D 2 50 20 C1 21/12 65 20 C1 3 80 20 D1,D 4 100 20 E				C2		
8 200 14 B 1 ¹ / ₂ 40 17 E 2 50 17 C1 2 ¹ / ₂ 65 17 D 3 80 17 E,E1 4 100 17 F 6 150 17 D1 1 ¹ / ₂ 40 18 E 2 50 18 C,C1 2 ¹ / ₂ 65 18 D1 3 80 18 E2,D1 4 100 18 D2 1 ¹ / ₂ 40 20 D 2 50 20 C1 2 ¹ / ₂ 65 20 C1 2 ¹ / ₂ 65 20 C1 3 80 20 D1,D 4 100 20 E	4	100		D		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	150	14	F		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		200	14	В		
2¹/2 65 17 D 3 80 17 E,E1 4 100 17 F 6 150 17 D1 1¹/2 40 18 E 2 50 18 C,C1 2¹/2 65 18 D1 3 80 18 E2,D1 4 100 18 D2 1¹/2 40 20 D 2 50 20 C1 2¹/2 65 20 C1 3 80 20 D1,D 4 100 20 E	1 ¹ / ₂	40	17	ш		
2¹/2 65 17 D 3 80 17 E,E1 4 100 17 F 6 150 17 D1 1¹/2 40 18 E 2 50 18 C,C1 2¹/2 65 18 D1 3 80 18 E2,D1 4 100 18 D2 1¹/2 40 20 D 2 50 20 C1 2¹/2 65 20 C1 3 80 20 D1,D 4 100 20 E	2	50	17	C1		
3 80 17 E,E1 4 100 17 F 6 150 17 D1 1 ¹ / ₂ 40 18 E 2 50 18 C,C1 2 ¹ / ₂ 65 18 D1 3 80 18 E2,D1 4 100 18 D2 1 ¹ / ₂ 40 20 D 2 50 20 C1 2 ¹ / ₂ 65 20 C1 3 80 20 D1,D 4 100 20 E	21/2	65	17			
4 100 17 F 6 150 17 D1 1 ¹ / ₂ 40 18 E 2 50 18 C,C1 2 ¹ / ₂ 65 18 D1 3 80 18 E2,D1 4 100 18 D2 1 ¹ / ₂ 40 20 D 2 50 20 C1 2 ¹ / ₂ 65 20 C1 3 80 20 D1,D 4 100 20 E				E,E1		
6 150 17 D1 1 ¹ / ₂ 40 18 E 2 50 18 C,C1 2 ¹ / ₂ 65 18 D1 3 80 18 E2,D1 4 100 18 D2 1 ¹ / ₂ 40 20 D 2 50 20 C1 2 ¹ / ₂ 65 20 C1 3 80 20 D1,D 4 100 20 E						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6					
2 50 18 C,C1 2 ¹ / ₂ 65 18 D1 3 80 18 E2,D1 4 100 18 D2 1 ¹ / ₂ 40 20 D 2 50 20 C1 2 ¹ / ₂ 65 20 C1 3 80 20 D1,D 4 100 20 E	1 ¹ / ₂					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
3 80 18 E2,D1 4 100 18 D2 1 ¹ l ₂ 40 20 D 2 50 20 C1 2 ¹ l ₂ 65 20 C1 3 80 20 D1,D 4 100 20 E	21/2					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
2 50 20 C1 2¹½ 65 20 C1 3 80 20 D1,D 4 100 20 E						
2 ¹ / ₂ 65 20 C1 3 80 20 D1,D 4 100 20 E						
3 80 20 D1,D 4 100 20 E						
4 100 20 E						
1 ¹ / ₂ 40 22 D1						
2 50 22 C,C1						
2 ¹ / ₂ 65 22 C,B1						
3 80 22 C1						
4 100 22 D3		100				
1 ¹ / ₂ 40 25 C	1 ¹ / ₂	40	25	С		
2 50 25 B1,B						
2 ¹ / ₂ 65 25 B	2 ¹ / ₂					
3 80 25 C						

All kind of threads are used for the pipe. Eg. Type A thread can be used as outside thread or end thicker part.

HP GRE FITTINGS REDUCER WITH OUTSIDE & INSIDE THREADS

 $\begin{tabular}{l} API SPEC 5B \\ Inside thread standard: API SPEC 5B \\ \end{tabular}$

Diam	ıeter	Pressure	[)	Е	1	Е	-2	l	-
(in)	(mm)	(MPa)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
2×1 ¹ / ₂	50×40	25	2.6	66	2.7	68	2.4	61	7.0	178
2 ¹ / ₂ ×1 ¹ / ₂	65×40	25	3.1	78.7	3.00	76.2	2.11	53.6	9.0	229
2 ¹ / ₂ ×2	65×50	25	3.25	82.6	3.25	82.6	2.69	68.3	9.0	229
3×1 ¹ / ₂	80×40	25	3.75	95.3	3.25	82.6	2.11	53.6	9.0	229
3×2	80×50	25	3.75	95.3	3.25	82.6	2.69	68.3	9.0	229
3×2 ¹ / ₂	80×65	25	3.88	98.6	3.50	88.9	3.00	76.2	10.0	254
4×2	100×50	25	4.80	121.9	4.13	104.9	2.69	68.3	10.0	254
4×2 ¹ / ₂	100×65	25	4.80	121.9	4.13	104.9	3.00	76.2	10.0	254
4×3	100×80	25	4.88	124.0	3.75	95.3	3.25	82.6	11.0	279
6×4	150×100	17	7.05	179.1	4.63	117.6	4.13	104.9	11.0	279
8(8 ⁵ / ₈)	200	14	9.65	245.1	4.88	124.0	3.25	82.6	12.0	305

HP GRE FITTINGS -NIPPLE

API SPEC 5B Inside thread standard: API SPEC 5B

Dian	neter	Pressure	Standard	Thread	l length	ID		
(in)	(mm)	(MPa)	length (mm)	(in)	(mm)	(in)	(mm)	
11/2	40	7~25	400	2.25	57.2	1.50	38.1	
2	50	5.5~8.5	400	2.69	68.3	2.16	54.9	
2	50	10~25	400	2.69	68.3	1.95	49.5	
2 ¹ / ₂	65	5.5~14	400	3.00	76.2	2.43	61.7	
2 ¹ / ₂	65	17~25	400	3.00	76.2	2.43	56.6	
3		3.5~8.5	400	3.00	76.2	3.19	81.0	
3	80	10~14	400	3.00	76.2	3.00	76.2	
3		17~25	400	3.25	82.6	2.72	69.1	
4		3.5~8.5	400	4.13	104.9	4.15	105.4	
4	100	10~12	400	4.13	104.9	4.00	101.6	
4	100	14	400	4.13	104.9	3.75	95.3	
4		17~22	400	4.13	104.9	3.35	85.1	
6		3.5	400	4.63	117.6	6.43	163.1	
6	150	5.5~8.5	400	4.63	117.6	6.19	157.3	
6		10~17	400	4.63	117.6	5.43	137.9	
8	200	3.5~10	400	4.63	117.6	7.50	190.5	
8(9 ⁵ / ₈)	200	12~14	400	4.88	124.0	7.50	190.5	

We have different sizes and pressures of the nipples.

The standard length of the nipple is 400mm, other length of nipple can be also obtained.

HP GRE FITTINGS - REDUCER WITH BOTH INSIDE THREADS

API SPEC 5B Inside thread standard: API SPEC 5B

Diam	eter	Pressure	[)	E	-1	E	2	L	
(in)	(mm)	(MPa)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
2×1 ¹ / ₂	50×40	25	4.25	108.0	2.69	68.3	2.11	53.6	6.625	168.3
2 ¹ / ₂ ×1 ¹ / ₂	65×40	25	5.25	133.4	3.00	76.2	2.11	53.6	6.80	172.7
2 ¹ / ₂ ×2	65×50	25	5.25	133.4	3.00	76.2	2.69	68.3	6.80	172.7
3×1 ¹ / ₂	80×40	25	6.00	152.4	3.25	82.6	2.11	53.6	8.00	203.2
3×2	80×50	25	6.00	152.4	3.25	82.6	2.69	68.3	8.00	203.2
3×2 ¹ / ₂	80×65	25	6.00	152.4	3.25	82.6	3.00	76.2	8.00	203.2
4×1 ¹ / ₂	100×40	22	7.45	189.2	4.13	104.9	2.11	53.6	10.125	257.2
4×2	100×50	22	7.45	189.2	4.13	104.9	2.69	68.3	10.125	257.2
4×2 ¹ / ₂	100×65	22	7.45	189.2	4.13	104.9	3.00	76.2	10.125	257.2
4×3	100×80	25	7.45	189.2	4.13	104.9	3.25	82.6	10.125	257.2
6×4	150×100	17	9.50	241.3	4.63	117.6	4.13	104.9	15.00	381.0
8(8 ⁵ / ₈)×4	200×100	10	10.30	261.6	4.50	114.3	4.13	104.9	15.00	381.0
8(8 ⁵ / ₈)×6	200×150	10	10.30	261.6	4.50	114.3	4.63	117.6	15.00	381.0
8(9 ⁵ / ₈)×4	200×100	12~14	12.20	309.9	4.88	124.0	4.13	104.9	15.00	381.0
8(9 ⁵ / ₈)×6	200×150	12~14	12.20	309.9	4.88	124.0	4.63	117.6	15.00	381.0

HP GRE FITTINGS- REDUCER WITH OUTSIDE THREADS

API SPEC 5B Inside thread standard: API SPEC 5B

Dian	neter	Pressure	[)	E	-1	E	2	I	-
(in)	(mm)	(MPa)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
		17	1.50	38.1	2.69	68.3	2.11	53.6	12.00	304.8
		25	1.50	38.1	3.00	76.2	2.11	53.6	12.00	304.8
		25	1.95	49.5	3.00	76.2	2.69	68.3	12.00	304.8
3×1 ¹ / ₂	80×40	25	1.50	38.1	3.25	82.6	2.11	53.6	12.00	304.8
3×2	80×50	25	1.95	49.5	3.25	82.6	2.69	68.3	12.00	304.8
3×2 ¹ / ₂	80×65	25	2.37	60.2	3.25	82.6	3.00	76.2	12.00	304.8
		22	1.50	38.1	4.13	104.9	2.11	53.6	14.00	355.6
		22	1.95	49.5	4.13	104.9	2.69	68.3	14.00	355.6
		20	2.37	60.2	4.13	104.9	3.00	76.2	14.00	355.6
		20	2.94	74.7	4.13	104.9	3.25	82.6	14.00	355.6
6×2	150×50	12~14	1.50	38.1	4.63	117.6	2.69	68.3	16.00	406.4
6×2 ¹ / ₂	150×65	12~14	2.37	60.2	4.63	117.6	3.00	76.2	16.00	406.4
6×3	150×80	12~14	2.94	74.7	4.63	117.6	3.25	82.6	16.00	406.4
6×4	150×100	12~14	3.92	99.6	4.63	117.6	4.13	104.9	16.00	406.4
		10	2.94	74.7	4.50	114.3	3.25	82.6	17.00	431.8
		10	3.92	99.6	4.50	114.3	4.13	104.9	17.00	431.8
		10	5.93	150.6	4.50	114.3	4.63	117.6	17.00	431.8

HP GRE FITTINGS - COUPLING FOR REPAIR

		-
-	C	-

Bells for both ends

Diar	meter	Pressure	Type	Bell I	ength	OD		Coupling length	
(in)	(mm)	(MPa)	туре	(in)	(mm)	(in)	(mm)	(in)	(mm)
		7~10	А	3.220	81.8				
1 ¹ / ₂	40	12~14	В	3.460	87.9	2.20	55.9	18.0	457.2
172	40	17	C	4.260	108.2	2.20	33.9	10.0	437.2
		18	D	4.580	116.3				
		5.5~8.5	Α	3.220	81.8				457.2
2	50	10~12	В	4.020	102.1	3.00	76.2	18.0	
	ວບ	14~17	С	4.500	114.3	3.00			
		18	D	5.150	130.8				
		5.5~8.5	A	3.220	81.3		92.7		
2 ¹ / ₂	65	10~12	В	4.380	122.7	3.7		18.0	457.2
212	05	14	С	5.470	138.9	3.7			
		17~18	D	6.760	171.7				
		3.5~8.5	А	5.000	127.0	4.50	114.3		457.2
3	80	10	В	4.830	122.7			18.0	
,	00	12~14	O	6.900	175.3				
		17~18	D	8.200	208.3				
		3.5~8.5	Α	5.600	142.2				
4	100	10~12	В	7.000	177.8	5.75	148.3	18.0	457.2
		14	С	8.800	223.5				
		3.5	А	4.500	114.3				
6	150	5.5~8.5	В	8.080	205.3	8.00	203.2	18.0	457.2
		10	С	9.000	228.6				
8	200	3.5~7	А	8.160	207.3	10.00	254.0	18.0	457.2
0	200	8.5	В	6.744	171.3	10.00	204.0	10.0	401.2

PRODUCT TYPICAL PHYSICAL PROPERTY

Longitudinal tensile strength	MPa	90
Longitudinal tensile modulus	MPa	10440
Longitudinal compression strength	MPa	130
Hoop tensile strength	MPa	340
Hoop tensile modulus	MPa	21500
Heat expansi.coefficient	mm/mm/℃	2.27×10⁵
Heat conductive coefficient	W/(m)(℃)	0.14
Density	Kg/m³	1.9~2.0×10³
Poisson's ratio	1	0.4
Hacen Williams coefficient	1	150

PRODUCT TYPICAL CHEMICAL RESISTANCE

Chemical environment	Recommended highest temperature
100% Ethane	24
10% Hydrochloric acid	NR
Sulfureted hydrogen (dry) 100%	66
Sulfureted hydrogen (wet and saturation)	52
Coal oil	66
20% Carbinol	38
Mineral alcohol	24
Petrolic alcohol	38
3% Sulphuric acid	24
100% Toluene	NR
100ppm Chloridized water	77
Distilled water	93
Hard water	80
Seawater	80

PRODUCT TYPICAL CHEMICAL RESISTANCE (CONT.)

Chemical environment	$^{\circ}\!$
Acetum 20%	NR
Benzene 10%	21
Citric acid 25%	66
Crude oil (with and without sulphur)	77
Ethanol 100%	24
Combustible oil	66
Hcptane 100%	52
3% Hydrochloric acid	24
Hydrofluorid acid	NR
10% Pyruvic acid 3%	38
Aeromautic oil 100%	66
Methane	60
Chloromethane 10%	NR
5% Inorganic mud acid	38
(Exposure endurance under 8 hours)	
5-50% Sodium hydroxide	NR
10% Sulphuic acid 100%	NR
100% Alcoholic amine	NR
Soft water	93
Haloid water	80
Brine	80
toluene	NR
Amine hydroxide 28%	NR
(1) CO2 (dry)	80
(2) CO2 (wet)	66
Diesel oil 100%	66
Ethanol (all)	80
100% Gasoline	60

Note:

- 'NR' indicates an inadvisable application.
- In the non-critical state, FRP pipe is not suitable for transporting supercritical CO₂.
- This table provides reference values for application and common chemical-resistance index of high-pressure FRP pipe.
- It does not take into account specific chemical compounds, thermodynamics, mechanical loading or stress. Maximum temperatures are based on recent laboratory experiments, practical oil-field trials, and data from raw-material suppliers.

SPECIALTY -LNG, MARINE & CHEMICAL INDUSTRY

GRE

Diameter Range	Pressure Tolerance	Temperature Range
40 mm – 1000 mm	Up to 25 MPa	Up to 93 °C (200 °F)

Key Features

High Pressure Resistance

Lightweight & Easy Transport

Corrosion

Long Service Life

Excellent Hydraulic Characteristic

Low Friction & No Fouling

Antistatic

Curing Series

- Acid Anhydridecured system
- Aromatic Aminecured system

Reinforced Fire Jacket

Applications

Fire water pipeline for LNG Terminal

Sea water pipeline

Bittern water pipeline

Potable water and sewage pipeline

Standards

API 15LR

American Petroleum Institute 15LR Standards

SY/T6266-2004

Petroleum and Natural Gas Industry Standards

IMO A.753

International Maritime Organization A.753 Standards

ASTM F1173

American Society for Testing and Materials F1173 Standards

Type Approval

- API 15LR American Petroleum Institute 15LR Certification
- Manufacture License of Special Equipment Certification
- ABS Certification
- CCS Certification
- DNV.GL Certification
- BV Certification
- KR Certification

SPECIALTY GRE PIPE SIZE & RATED PRESSURE

Specification	(Mpa) Rated Pressure	1.0	1.6	2.0	2.5	3.5	4	5.5	6	8	10	12
in	mm											
1½ "	40	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
2 "	50	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark
3 "	80	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$
4 "	100	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
6 "	150	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$
8 "	200	\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$		
10 "	250	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$			
12 "	300	\checkmark	$\sqrt{}$	\checkmark		\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$			
16 "	400	\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark				
20 "	500	\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark				
2 4 "	600	\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$							
3 2 "	800	\checkmark	$\sqrt{}$	\checkmark								
36"	900	\checkmark	$\sqrt{}$	\checkmark								
40 "	1000	$\sqrt{}$	$\sqrt{}$	\checkmark								

Note:" $\sqrt{}$ " means our company's existing pipe production capacity.

SPECIALTY GRE PIPE SIZE AND WEIGHT (Mpa 1.6)

Specif	ication	ID	OD	W.T.	AVG Weight	Rated Pressure
mm	in	mm	mm	mm	Kg/m	Мра
40	11/2	38	44	3.0	1.3	1.6
50	2	48	54.2	3.1	1.3	1.6
80	3	76	82.2	3.1	1.8	1.6
100	4	98	106.2	4.1	3.1	1.6
125	5	123	131.2	4.1	3.5	1.6
150	6	148	156.2	4.1	4.6	1.6
200	8	193	204	5.5	7.4	1.6
250	10	250	264	7.0	12	1.6
300	12	300	316.6	8.3	17	1.6
350	14	350	368	9.0	19	1.6
400	16	400	420.6	10.3	25	1.6
450	18	450	473	11.5	32	1.6
500	20	500	525.6	12.8	29	1.6
600	24	600	630.8	15.4	56	1.6
700	28	700	737.4	18.7	75	1.6
750	30	750	790	20.0	93	1.6
800	32	800	842.8	21.4	102	1.6
900	36	900	948	24.0	132	1.6
1000	40	1000	1053.8	26.9	165	1.6

SPECIALTY GRE PIPE SIZE AND WEIGHT (Mpa 2.0)

Specif	ication	ID	OD	W.T.	AVG Weight	Rated Pressure
mm	in	mm	mm	mm	Kg/m	Мра
40	1½	38	44	3	1.3	2.0
50	2	48	54.2	3.1	1.3	2.0
80	3	76	82.2	3.1	1.8	2.0
100	4	98	106.2	4.1	3.1	2.0
125	5	123	131.2	4.4	3.76	2.0
150	6	148	158.6	5.3	5.87	2.0
200	8	193	207	7	9.48	2.0
250	10	250	267.6	8.8	15.2	2.0
300	12	300	318.4	9.2	18.9	2.0
350	14	350	372	11	23.5	2.0
400	16	400	425	12.5	30.7	2.0
450	18	450	476	13	36.5	2.0
500	20	500	528	14	43.1	2.0
600	24	600	634	17	62.6	2.0
700	28	700	740	20	82.9	2.0
750	30	750	793	21.5	101.5	2.0
800	32	800	845	22.5	109.8	2.0
900	36	900	950	25	140	2.0
1000	40	1000	1055	27.5	171.5	2.0

Fittings: Fittings related to pipe under the pressure of 1.6MPa~2.0MPa, include flange, elbow, tee, reducer and so on. Those fittings are manufactured through the mechanical winding or composite molding. Its performance is same as the pipe in pressure, temperature, and resistance to chemical corrosion, and its joint matches with the pipe of the same specification.

SPECIALTY GRE PIPE ENGINEERING DATA SHEET

Nominal	Nominal pipe size		pressure rating		Vacuum and the pressure level at room temperature limiting pressure rated pressure			
				limiting p		•		
in	mm	psig	Мра	psig	Мра	psig	Мра	
11/2	40	230	1.6	> 3000	> 210	> 1000	> 70	
2	50	230	1.6	> 1700	> 117	> 563	> 38.8	
2 1/2	65	230	1.6	1500	100	500	34.5	
3	80	230	1.6	855	59	210	14.5	
4	100	230	1.6	305	21	96	6.6	
5	125	230	1.6	380	26.2	55	3.8	
6	150	230	1.6	175	12.1	55	3.8	
8	200	230	1.6	85	5.9	28	1.9	
10	250	230	1.6	80	5.5	26	1.8	
12	300	230	1.6	75	5.2	24	1.7	
14	350	230	1.6	75	5.2	23	1.6	
16	400	230	1.6	70	4.8	23	1.6	
18	450	230	1.6	70	4.8	22	1.5	
20	500	230	1.6	70	4.8	22	1.5	
24	600	230	1.6	70	4.8	22	1.5	
26	650	230	1.6	70	4.8	22	1.5	
28	700	230	1.6	70	4.8	22	1.5	
30	750	230	1.6	70	4.8	22	1.5	
32	800	230	1.6	70	4.8	22	1.5	
36	900	230	1.6	70	4.8	22	1.5	
40	1000	230	1.6	70	4.8	22	1.5	

Nominal	pipe size	pressui	e rating	Vacuum a	nd the pressure	level at room ten	nperature
				limiting p	ressure	rated pr	essure
in	mm	psig	Мра	psig	Мра	psig	Мра
11/2	40	285	2.0	> 3000	> 210	> 1000	> 70
2	50	285	2.0	> 1700	> 117	> 563	> 38.8
21/2	65	285	2.0	1500	100	500	34.5
3	80	285	2.0	855	59	210	14.5
4	100	285	2.0	305	21	96	6.6
5	125	285	2.0	380	26.2	55	3.8
6	150	285	2.0	175	12.1	55	3.8
8	200	285	2.0	175	12.1	55	3.8
10	250	285	2.0	175	12.1	55	3.8
12	300	285	2.0	175	12.1	55	3.8
14	350	285	2.0	175	12.1	55	3.8
16	400	285	2.0	175	12.1	55	3.8
18	450	285	2.0	175	12.1	55	3.8
20	500	285	2.0	175	12.1	55	3.8
24	600	285	2.0	175	12.1	55	3.8
26	650	285	2.0	150	10.3	50	3.4
28	700	285	2.0	150	10.3	50	3.4
30	750	285	2.0	150	10.3	50	3.4
32	800	285	2.0	150	10.3	50	3.4
36	900	285	2.0	150	10.3	50	3.4
40	1000	285	2.0	150	10.3	50	3.4

ENGINEERING DATA SHEET (CONT.)

1.2、1.2-C、1.2-F、1.2-CF

Nominal pipe size		pressure rating		Vacuum and the pressure level at room temperature			
				limiting p	ressure	rated pr	essure
in	mm	psig	Мра	psig	Мра	psig	Мра
1	25	175	1.2	> 3000	> 21	> 1000	> 7.0
1.5	40	175	1.2	> 3000	> 21	> 1000	> 7.0
2	50	175	1.2	>1700	>11.7	>563	>3.88
2.5	65	175	1.2	1500	10.0	500	3.45
3	80	175	1.2	855	5.9	210	1.45
4	100	175	1.2	305	2.1	96	0.66
5	125	175	1.2	380	2.62	55	0.38
6	150	175	1.2	175	1.21	55	0.38
8	200	175	1.2	85	0.59	28	0.19
10	250	175	1.2	80	0.55	26	0.18
12	300	175	1.2	75	0.52	24	0.17
14	350	175	1.2	75	0.52	23	0.16
16	400	175	1.2	70	0.48	23	0.16
18	450	175	1.2	70	0.48	22	0.15
20	500	175	1.2	70	0.48	22	0.15
24	600	175	1.2	70	0.48	22	0.15
26	650	175	1.2	70	0.48	22	0.15
28	700	175	1.2	70	0.48	22	0.15
30	750	175	1.2	70	0.48	22	0.15
32	800	175	1.2	70	0.48	22	0.15
36	900	175	1.2	70	0.48	22	0.15
40	1000	175	1.2	70	0.48	22	0.15

1.8、1.8-C、1.8-F、1.8-CF

Nomina	l pipe size	pressu	re rating	Vacuum and the pressure level at room temperature			
				limiting p	pressure	rated p	ressure
in	mm	psig	Мра	psig	Мра	psig	Мра
1	25	250	1.8	>3000	>21.0	>1000	>7.0
1.5	40	250	1.8	>3000	>21.0	>1000	>7.0
2	50	250	1.8	>1700	>11.7	>563	>3.88
2.5	65	250	1.8	1500	10.0	500	3.45
3	80	250	1.8	855	5.90	210	1,45
4	100	250	1.8	305	2.10	96	0.66
5	125	250	1.8	380	2.62	55	0.38
6	1500	250	1.8	175	1.21	55	0.38
8	200	250	1.8	175	1.21	55	0.38
10	250	250	1.8	175	1.21	55	0.38
12	300	250	1.8	175	1.21	55	0.38
14	350	250	1.8	175	1.21	55	0.38
16	400	250	1.8	175	1.21	55	0.38
18	450	250	1.8	175	1.21	55	0.38
20	500	250	1.8	175	1.21	55	0.38
24	600	250	1.8	175	1.21	55	0.38
26	650	250	1.8	150	1.03	50	0.34
28	700	250	1.8	150	1.03	50	0.34
30	750	250	1.8	150	1.03	50	0.34
32	800	250	1.8	150	1.03	50	0.34
36	900	250	1.8	150	1.03	50	0.34
40	1000	250	1.8	150	1.03	50	0.34

Note: C-Antistatic Pipe; F-Fire Endurance Pipe; CF-Antistatic and Fire Endurance Pipe.

SPECIALTY GRE PIPE CHEMICAL CORROSION RESISTANCE

Chemical environment	℃ Recommended highest temperature
Ethane100%	24
Hydrochloric acid10%	NR
Sulfureted hydrogen (dry)100%	66
Sulfureted hydrogen (wet and saturation)	
	52
Coal oil	66
Carbinol 20%	38
Mineral alcohol	24
Petrolic alcohol	38
3% Sulphuric acid	24
Toluene100%	NR
Chloridized water 100 ppm	77
Distilled water	93
Hard water	80
Sea water	80
Acetum 20%	NR
Benzene 10%	21
Citric acid 25%	66
Crude oil (with and without sulphur)	77
Ethanol 100%	24
Combustible oil	66
Hcptane 100%	52
Hydrochloric acid 3%	24
Hydrofluorid acid	NR
10% Pyruvic acid 3%	38
Aeromautic oil 100%	66
Methane	60
Chloromethane 10%	NR
5% Inorganic mud acid	38
(Exposure endurance under 8 hours)	
5-50% Sodium hydroxide	NR
10%Sulphuic acid 100%	NR
Alcoholic amine 100%	NR
Soft water	93
Haloid water	80
Brine	80
toluene	NR
Amine hydroxide 28%	NR
(1) CO2 (dry)	80
(1) CO2(wt)	66
Diesel oil 100%	66
Ethanol (all)	80
100% Gasoline	60
100% Gasonite	60

SPECIALTY GRE PIPE SIZE & WEIGHT

Nomin	al Dia	Inside Dia	Outside Dia.	Nominal W/T.	Avg. Weight	Rated pressure
(mm)	(in)	(mm)	(mm)	(mm)	(kg/m)	(Mpa)
40	1½	38	44	3.0	1.3	1.2
50	2	53	59.2	3.1	1.3	1.2
80	3	81.8	88	3.1	1.8	1.2
100	4	105.2	113.4	4.1	3.1	1.2
125	5	131.9	140.1	4.1	3.5	1.2
150	6	148	156.2	4.1	4.6	1.2
200	8	193	204	5.5	7.4	1.2
250	10	250	264	7.0	12	1.2
300	12	300	316.6	8.3	17	1.2
350	14	350	368	9.0	19	1.2
400	16	400	420.6	10.3	25	1.2
450	18	450	473	11.5	32	1.2
500	20	500	525.6	12.8	29	1.2
600	24	600	630.8	15.4	56	1.2
700	28	700	737.4	18.7	75	1.2
750	30	750	790	20.0	93	1.2
800	32	800	842.8	21.4	102	1.2
900	36	900	948	24.0	132	1.2
1000	40	1000	1053.8	26.9	165	1.2

(Mpa 1.2)

Nomir	nal Dia	Inside Dia	Outside Dia.	Nominal W/T.	Avg. Weight	Rated pressure
(mm)	(in)	(mm)	(mm)	(mm)	(kg/m)	(Mpa)
40	1½	38	44	3	1.3	1.8
50	2	53	59.2	3.1	1.3	1.8
80	3	81.8	88	3.1	1.8	1.8
100	4	105.2	113.4	4.1	3.1	1.8
125	5	131.9	140.9	4.4	3.76	1.8
150	6	148	158.6	5.3	5.87	1.8
200	8	193	207	7	9.48	1.8
250	10	250	267.6	8.8	15.2	1.8
300	12	300	318.4	9.2	18.9	1.8
350	14	350	372	11	23.5	1.8

(Mpa 1.8)

SPECIALTY GRE PIPE MAXIMUM SPAN LENGTH

(in.) (mm) (ft.) (m) (ft.) (ft.) <th< th=""><th></th><th colspan="5">70°F</th><th colspan="4">200°F</th></th<>		70°F					200°F			
1 25 12.8 3.9 12.8 3.9 11.2 3.4 11.2 3.4 1½ 40 15.2 4.6 15.2 4.6 13.3 4.1 13.3 4.1 2 50 16.2 5.0 14.2 4.3 14.2 4.3 2½ 65 17.2 5.2 17.2 5.2 15.0 4.6 15.0 4.6 3 80 18.6 5.7 18.6 5.7 16.3 5.0 16.3 5.0 4 100 20.0 6.1 20.0 6.1 17.5 5.3 17.5 5.3 5 125 22.0 6.7 22.0 6.7 19.0 5.8 19.0 5.8 6 150 23.1 7.0 23.1 7.0 20.2 6.2 20.2 6.2 8 200 25.4 7.7 26.6 8.1 22.3 6.8 23.4 7.1 10 250 28.0 8.5 29.5 9.0 24.5 7.5 25.9										
1½ 40 15.2 4.6 15.2 4.6 13.3 4.1 13.3 4.1 2 50 16.2 5.0 16.2 5.0 14.2 4.3 14.2 4.3 2½ 65 17.2 5.2 17.2 5.2 15.0 4.6 15.0 4.6 3 80 18.6 5.7 18.6 5.7 16.3 5.0 16.3 5.0 4 100 20.0 6.1 20.0 6.1 17.5 5.3 17.5 5.3 5 125 22.0 6.7 22.0 6.7 19.0 5.8 19.0 5.8 6 150 23.1 7.0 23.1 7.0 20.2 6.2 20.2 6.2 8 200 25.4 7.7 26.6 8.1 22.3 6.8 23.4 7.1 10 250 28.0 8.5 29.5 9.0 24.5 7.5 25.9 7.9 12 300 30.1 9.2 32.0 9.8 26	. ,	, ,	. ,	, ,		. ,	, ,	` ,	. ,	, ,
2 50 16.2 5.0 16.2 5.0 14.2 4.3 14.2 4.3 2½ 65 17.2 5.2 17.2 5.2 15.0 4.6 15.0 4.6 3 80 18.6 5.7 18.6 5.7 16.3 5.0 16.3 5.0 4 100 20.0 6.1 20.0 6.1 17.5 5.3 17.5 5.3 5 125 22.0 6.7 22.0 6.7 19.0 5.8 19.0 5.8 6 150 23.1 7.0 23.1 7.0 20.2 6.2 20.2 6.2 8 200 25.4 7.7 26.6 8.1 22.3 6.8 23.4 7.1 10 250 28.0 8.5 29.5 9.0 24.5 7.5 25.9 7.9 12 300 30.1 9.2 32.0 9.8 26.4 8.1 28.1 8.6 14 350 32.0 9.8 34.1 10.4	1	25						3.4		
2½ 65 17.2 5.2 17.2 5.2 15.0 4.6 15.0 4.6 3 80 18.6 5.7 18.6 5.7 16.3 5.0 16.3 5.0 4 100 20.0 6.1 20.0 6.1 17.5 5.3 17.5 5.3 5 125 22.0 6.7 22.0 6.7 19.0 5.8 19.0 5.8 6 150 23.1 7.0 23.1 7.0 20.2 6.2 20.2 6.2 8 200 25.4 7.7 26.6 8.1 22.3 6.8 23.4 7.1 10 250 28.0 8.5 29.5 9.0 24.5 7.5 25.9 7.9 12 300 30.1 9.2 32.0 9.8 26.4 8.1 28.1 8.6 14 350 32.0 9.8 34.1 10.4 28.1 8.6 29.9 9.1 16 400 34.1 10.4 36.4 11.1	1½	40	15.2	4.6	15.2	4.6	13.3	4.1	13.3	4.1
3 80 18.6 5.7 18.6 5.7 16.3 5.0 16.3 5.0 4 100 20.0 6.1 20.0 6.1 17.5 5.3 17.5 5.3 5 125 22.0 6.7 22.0 6.7 19.0 5.8 19.0 5.8 6 150 23.1 7.0 23.1 7.0 20.2 6.2 20.2 6.2 8 200 25.4 7.7 26.6 8.1 22.3 6.8 23.4 7.1 10 250 28.0 8.5 29.5 9.0 24.5 7.5 25.9 7.9 12 300 30.1 9.2 32.0 9.8 26.4 8.1 28.1 8.6 14 350 32.0 9.8 34.1 10.4 28.1 8.6 29.9 9.1 16 400 34.1 10.4 36.4 11.1 29.9 9.1 31.9 9.7 18 450 35.8 10.9 38.3 11.7	2	50	16.2	5.0	16.2	5.0	14.2	4.3	14.2	4.3
4 100 20.0 6.1 20.0 6.1 17.5 5.3 17.5 5.3 5 125 22.0 6.7 22.0 6.7 19.0 5.8 19.0 5.8 6 150 23.1 7.0 23.1 7.0 20.2 6.2 20.2 6.2 8 200 25.4 7.7 26.6 8.1 22.3 6.8 23.4 7.1 10 250 28.0 8.5 29.5 9.0 24.5 7.5 25.9 7.9 12 300 30.1 9.2 32.0 9.8 26.4 8.1 28.1 8.6 14 350 32.0 9.8 34.1 10.4 28.1 8.6 29.9 9.1 16 400 34.1 10.4 36.4 11.1 29.9 9.1 31.9 9.7 18 450 35.8 10.9 38.3 11.7 31.4 9.6 33.6 10.2 20 500 37.7 11.5 40.4 12.3 <th>21/2</th> <th>65</th> <th>17.2</th> <th>5.2</th> <th>17.2</th> <th>5.2</th> <th>15.0</th> <th>4.6</th> <th>15.0</th> <th>4.6</th>	21/2	65	17.2	5.2	17.2	5.2	15.0	4.6	15.0	4.6
5 125 22.0 6.7 22.0 6.7 19.0 5.8 19.0 5.8 6 150 23.1 7.0 23.1 7.0 20.2 6.2 20.2 6.2 8 200 25.4 7.7 26.6 8.1 22.3 6.8 23.4 7.1 10 250 28.0 8.5 29.5 9.0 24.5 7.5 25.9 7.9 12 300 30.1 9.2 32.0 9.8 26.4 8.1 28.1 8.6 14 350 32.0 9.8 34.1 10.4 28.1 8.6 29.9 9.1 16 400 34.1 10.4 36.4 11.1 29.9 9.1 31.9 9.7 18 450 35.8 10.9 38.3 11.7 31.4 9.6 33.6 10.2 20 500 37.7 11.5 40.4 12.3 33.1 10.1 35.4 10.8	3	80	18.6	5.7	18.6	5.7	16.3	5.0	16.3	5.0
6 150 23.1 7.0 23.1 7.0 20.2 6.2 20.2 6.2 8 200 25.4 7.7 26.6 8.1 22.3 6.8 23.4 7.1 10 250 28.0 8.5 29.5 9.0 24.5 7.5 25.9 7.9 12 300 30.1 9.2 32.0 9.8 26.4 8.1 28.1 8.6 14 350 32.0 9.8 34.1 10.4 28.1 8.6 29.9 9.1 16 400 34.1 10.4 36.4 11.1 29.9 9.1 31.9 9.7 18 450 35.8 10.9 38.3 11.7 31.4 9.6 33.6 10.2 20 500 37.7 11.5 40.4 12.3 33.1 10.1 35.4 10.8	4	100	20.0	6.1	20.0	6.1	17.5	5.3	17.5	5.3
8 200 25.4 7.7 26.6 8.1 22.3 6.8 23.4 7.1 10 250 28.0 8.5 29.5 9.0 24.5 7.5 25.9 7.9 12 300 30.1 9.2 32.0 9.8 26.4 8.1 28.1 8.6 14 350 32.0 9.8 34.1 10.4 28.1 8.6 29.9 9.1 16 400 34.1 10.4 36.4 11.1 29.9 9.1 31.9 9.7 18 450 35.8 10.9 38.3 11.7 31.4 9.6 33.6 10.2 20 500 37.7 11.5 40.4 12.3 33.1 10.1 35.4 10.8	5	125	22.0	6.7	22.0	6.7	19.0	5.8	19.0	5.8
10 250 28.0 8.5 29.5 9.0 24.5 7.5 25.9 7.9 12 300 30.1 9.2 32.0 9.8 26.4 8.1 28.1 8.6 14 350 32.0 9.8 34.1 10.4 28.1 8.6 29.9 9.1 16 400 34.1 10.4 36.4 11.1 29.9 9.1 31.9 9.7 18 450 35.8 10.9 38.3 11.7 31.4 9.6 33.6 10.2 20 500 37.7 11.5 40.4 12.3 33.1 10.1 35.4 10.8	6	150	23.1	7.0	23.1	7.0	20.2	6.2	20.2	6.2
12 300 30.1 9.2 32.0 9.8 26.4 8.1 28.1 8.6 14 350 32.0 9.8 34.1 10.4 28.1 8.6 29.9 9.1 16 400 34.1 10.4 36.4 11.1 29.9 9.1 31.9 9.7 18 450 35.8 10.9 38.3 11.7 31.4 9.6 33.6 10.2 20 500 37.7 11.5 40.4 12.3 33.1 10.1 35.4 10.8	8	200	25.4	7.7	26.6	8.1	22.3	6.8	23.4	7.1
14 350 32.0 9.8 34.1 10.4 28.1 8.6 29.9 9.1 16 400 34.1 10.4 36.4 11.1 29.9 9.1 31.9 9.7 18 450 35.8 10.9 38.3 11.7 31.4 9.6 33.6 10.2 20 500 37.7 11.5 40.4 12.3 33.1 10.1 35.4 10.8	10	250	28.0	8.5	29.5	9.0	24.5	7.5	25.9	7.9
16 400 34.1 10.4 36.4 11.1 29.9 9.1 31.9 9.7 18 450 35.8 10.9 38.3 11.7 31.4 9.6 33.6 10.2 20 500 37.7 11.5 40.4 12.3 33.1 10.1 35.4 10.8	12	300	30.1	9.2	32.0	9.8	26.4	8.1	28.1	8.6
18 450 35.8 10.9 38.3 11.7 31.4 9.6 33.6 10.2 20 500 37.7 11.5 40.4 12.3 33.1 10.1 35.4 10.8	14	350	32.0	9.8	34.1	10.4	28.1	8.6	29.9	9.1
20 500 37.7 11.5 40.4 12.3 33.1 10.1 35.4 10.8	16	400	34.1	10.4	36.4	11.1	29.9	9.1	31.9	9.7
	18	450	35.8	10.9	38.3	11.7	31.4	9.6	33.6	10.2
24 600 41.2 12.6 44.2 13.5 36.1 11.0 38.7 11.8	20	500	37.7	11.5	40.4	12.3	33.1	10.1	35.4	10.8
	24	600	41.2	12.6	44.2	13.5	36.1	11.0	38.7	11.8
26 650 38.9 11.9 44.6 13.6 35.3 10.8 37.7 11.5	26	650	38.9	11.9	44.6	13.6	35.3	10.8	37.7	11.5
28 700 43.4 13.2 45.9 14.0 36.6 11.2 38.8 11.8	28	700	43.4	13.2	45.9	14.0	36.6	11.2	38.8	11.8
30 750 44.8 13.7 47.5 14.5 37.9 11.6 40.1 12.2	30	750	44.8	13.7	47.5	14.5	37.9	11.6	40.1	12.2
32 800 46.3 14.1 49.0 14.9 39.1 11.9 41.4 12.6	32	800	46.3	14.1	49.0	14.9	39.1	11.9	41.4	12.6
36 900 49.0 14.9 52.0 15.8 41.5 12.6 43.9 13.4	36	900	49.0	14.9	52.0	15.8	41.5	12.6	43.9	13.4
40 1000 50.5 15.4 54.1 16.5 43.6 13.3 45.3 13.8	40	1000	50.5	15.4	54.1	16.5	43.6	13.3	45.3	13.8

Powered by Proven Partnerships

At Petronich, we proudly leverage the global partnerships of Ocean Pipe Technology - working with some of the world's most respected energy, engineering, and infrastructure companies. These collaborations are a testament to the proven performance and reliability of our GRE and FRP piping systems across the most demanding environments.

Pakistan Petroleum Limited

CASE HISTORY

Leveraging Ocean Pipe Technology's extensive project history, Petronich Pipe Solutions delivers field-proven piping solutions tailored to your toughest industrial challenges.

Ocean Technology's clientele includes leading Engineering, Procurement, and Construction (EPC) contractors, government infrastructure bodies, and global energy operators. Their systems have been successfully deployed in high-stakes environments - from offshore oil platforms and petrochemical plants, to municipal water systems, mining operations, and industrial facilities requiring non-corrosive, long-life pipeline solutions.

With projects delivered across Asia, the Middle East, Africa, Europe, and Australia, Ocean Technology is known not just for its product excellence but for its ability to support large-scale installations with dependable logistics, on-site technical supervision, and full compliance documentation. Their reputation for quality and performance has made them a preferred supplier to clients who demand engineering precision and operational resilience.

DN300-4MPa

2,000 m DN350-5.5MPa 3.000 m

CASE HISTORY

Leveraging Ocean Pipe Technology's extensive project history, Petronich Pipe Solutions delivers field-proven piping solutions tailored to your toughest industrial challenges.

Pump Skid Integration Pipe System for Oil Field

Fire Pipe in LNG Station

CASE HISTORY

Leveraging Ocean Pipe Technology's extensive project history, Petronich Pipe Solutions delivers field-proven GRE/FRP piping solutions tailored to your toughest industrial challenges.

Salt Chemical Pipeline

Offshore Oil Field Cooling Water Line for Oil & Gas Pot

Ningbo ship ballast piping

Hot Spring Pip

Recovery platforms water supply system

Acid Gas Exhaust System of Drilling Unit Platform

Phone +61 393337701

Local Calls: 1300 084 965

Email inquiry@petronich.com.au

Website https://petronich.com.au

Melbourne Head Office

Unit 12/882 Cooper St Somerton VIC 3062 Australia

Postal Address

7 Foden Avenue,
Campbellfield, VIC, 3061
Australia